2-D FEM Simulation for Induction Positioner (Rev 1)

Michael E. Aiello 10/8//22

This file is based on code from application em.ipynb written by Jgrgen S. Dokken https://jorgensd.github.io/dolfinx-
tutorial/chapter3/em.html

This program runs in an open souce simulation program known as FENiCSx https://jorgensd.github.io/dolfinx-tutorial/

The interface used in this simulation is a Python Notebook file (.ipnb) running in JupyterLab. This document can be saved
as an HTML file with simulations results that can be viewed interactively offline. However, the current enviroment used
is not setup to generate this type of document. As a result, the simulation results are saved at the bottom of this HTML
file in static form.

Comments as to modifications to the original code provided by Jgrgen S. Dokken are provided in boldface below.

In the first code segment below, GMSH python programs have been created to model the core and
induction plate (copper faced iron plate). There are two cores created. A regular E-core (three teeth and
two gaps) and a core with five teeth. The E-core allows for a smaller width but offers reduced performance
over the the five teeth version. The five teeth, three gap variant is used in this simulation. Python files
GenerateCore_2_Gap_Rev_3, Generate_4_Gap_Rev_3, GenerateCore_Enhanced,
GenerateConductivePlate_copper, GenerateConductivePlate_iron are mesh generation files (GMSH) and
are not in this presentation

import gmsh
import numpy as np
from mpidpy import MPI # NOTE: Not running with MPI effects precision of computations!

from GeneratePCTraces Rev 3 import *

from GenerateCore 2 Gap Rev 3 import *

from GenerateCore 4 Gap Rev 3 import *

from GenerateCore Enhanced import *

from GenerateConductionPlate copper import *
from GenerateConductionPlate iron import *
gmsh.initialize()

0.05
1

-
R # Radius of domain
gdim = 2 # Geometric dimension of the mesh

air _gap = .0025

center_x pos off = - .5 * (3 * (.025 + .01 + .01) + 4 * (.06 - .015))

https://jorgensd.github.io/dolfinx-tutorial/chapter3/em.html
https://jorgensd.github.io/dolfinx-tutorial/

center y pos off = - .5 * (.05 + .01 + air gap + (.1 + (.0014 + .0087) * (10 + 2)))

layer start pos = .1 + .0087 + center y pos off
row_start_pos = .06 - .015 + .01 + center_x _pos_off - .5 * (.06 + .03)

core y start pos
core_x_start pos

0 + center y pos off
0 + center x pos off

plate y offset = air gap + (.1 + (.0014 + .0087) * (10 + 2))
plate x offset = - .5 * (.7 - 3 * (.025 + .01 + .01) - 4 * (.06 - .015))
y_axis_cond plate start = plate y offset + 0 + center_y pos_off
x_axis cond plate start = plate x offset + 0 + center x pos off

rank = MPI.COMM WORLD.rank

if rank ==
gmsh.model.occ.synchronize()

Define geometry for background
background = gmsh.model.occ.addDisk(0, 0, 0, R, R)
gmsh.model.occ.synchronize()

#Select to use two gap core...
Use 2 Gap Core = 0

if Use 2 Gap Core ==

core_x_start _pos = core x_start pos + .5 * (.06 + .03)

GenCoreRtnVals = GenerateCore 2 Gap Rev 3(core y start pos, core x start pos)
else:

core x_start pos = core x start pos - .5 * (.06 + .03)

GenCoreRtnVals = GenerateCore 4 Gap Rev 3(core y start pos, core x start pos)

core = GenCoreRtnVals[1]
core mass = GenCoreRtnVals[0]

core tuple = [(2, core)]
GenPCRtnVals = GeneratePCTraces Rev 3(layer start pos, row start pos)

traces = GenPCRtnVals[1]
traces mass = GenPCRtnVals[0]

GenCondP1ltRtnVals copper = GenerateConductionPlate copper(y axis cond plate start, x axis cond plate start)

copper = GenCondPltRtnVals copper[1]
copper _mass = GenCondPltRtnVals copper[0]

copper tuple = [(2, copper)]

GenCondPltRtnVals_iron = GenerateConductionPlate iron(y axis_cond plate start, x_axis_cond _plate start)
iron = GenCondPltRtnVals iron[1]
iron_mass = GenCondPltRtnVals_iron[0]

iron tuple = [(2, iron)]

trace tuples = []
for i in range(len(traces)):
trace tuples.append((2,traces[i]))

Resolve all boundaries of the different wires in the background domain
all surfaces = []

all surfaces.extend(core tuple)

all surfaces.extend(copper tuple)

all surfaces.extend(iron tuple)

all surfaces.extend(trace tuples)

whole domain = gmsh.model.occ.fragment([(2, background)], all surfaces)
gmsh.model.occ.synchronize()

Create physical markers for the different components in the backround.
We use the following markers:
- Vacuum: 0 (backround disk)
- Traces 1 to len(traces)
-
-
core_tag =
copper_tag
iron_tag =
trace tag = 4
background surfaces = []
other surfaces = []
for domain in whole domain[0]:
com = gmsh.model.occ.getCenter0fMass(domain[0], domain[1])
mass = gmsh.model.occ.getMass(domain[0@], domain[1])
Identify the core...
if np.isclose(mass, core mass, atol = .002):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], core tag)
core_tag +=1
other surfaces.append(domain)

[OV R |
N

Identify the copper plate...

elif np.isclose(mass, copper mass):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], copper tag)
copper_tag +=1
other surfaces.append(domain)

Identify the iron plate...

elif np.isclose(mass, iron_mass):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], iron tag)
iron_tag +=1
other surfaces.append(domain)

Identify the traces in the PC board.

elif np.isclose(mass, traces mass):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], trace tag)
trace tag +=1
other surfaces.append(domain)

elif np.allclose(com, [0, 0, O]): (Something wrong here. com center way off!)

else:

background surfaces.append(domain[1])

Add marker for the vacuum

gmsh.model.addPhysicalGroup(2, background surfaces, tag=0)

Create mesh resolution that is fine around the wires and

iron cylinder, coarser the further away you get
gmsh.model.mesh.field.add("Distance", 1)

edges = gmsh.model.getBoundary(other surfaces, oriented=False)

gmsh.model.mesh.field.setNumbers(1l, "EdgesList", [e[1l] for e in edges])
gmsh.model.mesh.field.add("Threshold", 2)
gmsh.model.mesh.field.setNumber(2, "IField", 1)
gmsh.model.mesh.field.setNumber(2, "LcMin", r / 2)
gmsh.model.mesh.field.setNumber(2, "LcMax", 5 * r)
gmsh.model.mesh.field.setNumber(2, "DistMin", 2 * r)
gmsh.model.mesh.field.setNumber(2, "DistMax", 4 * r)
gmsh.model.mesh.field.setAsBackgroundMesh(2)

Generate mesh
gmsh.option.setNumber("Mesh.Algorithm", 7)
gmsh.model.mesh.generate(gdim)

MeshTags for the physical cell data are created below. There is no change in the code from the original example
cited above.

from dolfinx.io import (cell perm gmsh, distribute entity data, extract gmsh geometry,
extract gmsh topology and markers, ufl mesh from gmsh)
from dolfinx.cpp.mesh import to type
from dolfinx.graph import create adjacencylist
from dolfinx.mesh import create mesh, meshtags from entities
if rank ==
Get mesh geometry
x = extract gmsh geometry(gmsh.model)

Get mesh topology for each element

topologies = extract gmsh topology and markers(gmsh.model)

Get information about each cell type from the msh files

num cell types = len(topologies.keys())

cell information = {}

cell dimensions = np.zeros(num cell types, dtype=np.int32)

for i, element in enumerate(topologies.keys()):
properties = gmsh.model.mesh.getElementProperties(element)
name, dim, order, num nodes, local coords, = properties
cell information[i] = {"id": element, "dim": dim, "num nodes": num nodes}
cell dimensions[i] = dim

Sort elements by ascending dimension
perm sort = np.argsort(cell dimensions)

Broadcast cell type data and geometric dimension

cell id = cell information[perm sort[-1]]["id"]

tdim = cell information[perm sort[-1]]["dim"]

num nodes = cell information[perm sort[-1]]["num nodes"]

cell id, num nodes = MPI.COMM WORLD.bcast([cell id, num nodes], root=0)

cells = np.asarray(topologies[cell id]["topology"], dtype=np.int64)
cell values = np.asarray(topologies[cell id]["cell data"], dtype=np.int32)
else:
cell id, num nodes = MPI.COMM WORLD.bcast([None, None], root=0)
cells, x = np.empty ([0, num nodes], dtype=np.int64), np.empty ([0, gdim])
cell values = np.empty((0,), dtype=np.int32)
gmsh.finalize()

Distribute the mesh over multiple processors. There is no change in the code from the original example cited
above.

Create distributed mesh

ufl domain = ufl mesh from gmsh(cell id, gdim)

gmsh cell perm = cell perm gmsh(to type(str(ufl domain.ufl cell())), num nodes)
cells = cells[:, gmsh cell perm]

mesh
tdim

create mesh(MPI.COMM WORLD, cells, x[:, :gdim], ufl domain)
mesh.topology.dim

local entities, local values = distribute entity data(mesh, tdim, cells, cell values)
mesh.topology.create connectivity(tdim, 0)

adj = create adjacencylist(local entities)

ct = meshtags from entities(mesh, tdim, adj, np.int32(local values))

Create data files to optionally inspect the mesh using Paraview. (No changes to the original example).

from dolfinx.io import XDMFFile

with XDMFFile(MPI.COMM WORLD, "gmsh test data.xdmf", "w") as xdmf:
xdmf.write mesh(mesh)
xdmf.write meshtags(ct)

Visualize the subdommains interactively using PyVista. As stated above this program was not saved for
interactive display so the results are shown at the end of this program in static form.

import pyvista
pyvista.set jupyter backend("pythreejs")
from dolfinx.plot import create vtk mesh

plotter = pyvista.Plotter()
grid = pyvista.UnstructuredGrid(*create vtk mesh(mesh, mesh.topology.dim))
num_local cells = mesh.topology.index map(mesh.topology.dim).size local
grid.cell data["Marker"] = ct.values[ct.indices<num local cells]
grid.set active scalars("Marker")
actor = plotter.add mesh(grid, show edges=True)
plotter.view xy()
if not pyvista.OFF SCREEN:

plotter.show()
else:

pyvista.start xvfb()

cell tag fig = plotter.screenshot("cell tags.png")

Next, we define the discontinous functions for the permability

n
and current

J.

using the MeshTags as in Defining material parameters through subdomains

The code section below has been modified relative to the original example (em.ipymb) to execute 20 steps
between 0 and 360 degrees of an alternating current (J) applied to the three phase copper traces
contained in the PC board inserted onto the motor core. The Vector potential is displayed for each
interation.

There is an option to view the flux density (B) in each of the 20 steps by setting view_magnetic_field to 1.
This option is disabled in this presentation.

The direction of flux relative to the stepping can be controlled by variable mmf_negative.

Also a slice of the vector potential in the center of the copper sheet (coating) can be viewed by setting
view_slice to 1.

from dolfinx.fem import (dirichletbc, Expression, Function, FunctionSpace,
VectorFunctionSpace, locate dofs topological)

from dolfinx.fem.petsc import LinearProblem

from dolfinx.mesh import locate entities boundary

from ufl import TestFunction, TrialFunction, as vector, dot, dx, grad, inner

from petsc4py.PETSc import ScalarType

import time
from IPython.display import clear output

from dolfinx.mesh import compute midpoints
Set direction of MMF wave here (0 or 1)...
mmf_negative = 0

Select to view vector potential....

view vector pontential = 1

Select to show magnetic field....
view magnetic field = 0

Select full 3-D view or "slice" along the y axis (center of the copper part of the conduction plate)
view slice = 0

for idx in range(0, 20):
if mmf negative == 1:
Theta = (19 - idx) * 2.0 * np.pi / 20.0

file:///home/maiello_20_04/Dolfinx_Projects/dolfinx-tutorial/MEA_workspace_Rev_3/subdomains

R YR NN

else:

Theta =
K = 30.0
Phase A cur
Phase B cur
Phase C cur

-

dx * 2.0 * np.pi / 20.0

*

np.sin(Theta)
np.sin(Theta - 2.0 * np.pi / 3.0)
np.sin(Theta - 4.0 * np.pi / 3.0)

*

K
K
K

*

Q = FunctionSpace(mesh, ("DG", 0))
material tags = np.unique(ct.values)
mu = Function(Q)
J = Function(Q)
As we only set some values in J, initialize all as 0
J.x.array[:] = 0
for tag in material tags:
cells = ct.indices[ct.values==tag]
num_cells = len(cells)
Set values for mu
if tag == 0:
mu_ = 4 * np.pi*le-7 # Vacuum
elif tag == 1:
mu_ = le-5 # Core (This should really be 6.3e-3)
elif tag == 3:
mu_ = le-5 # Conduction Plate (iron) (This should really be 6.3e-3)
else:
mu_ = 1.26e-6 # Else, Copper traces and Conduction Plate (copper)
mu.x.array[cells] = np.full(num cells, mu)
Now, assign the currents to traces representing Phase A, B and C

oW oW W

111! Verified OK above !!!111/~!

if tag in [28]:
J.x.array[cells] = np.full(num cells, 300.0)

Phase A, right side..
if tag in [4, 8, 12, 16, 20]:
J.x.array[cells] = np.full(num cells, Phase A cur)
Phase A, first slot (return)...
elif tag in [5, 9, 13, 17, 21]:
J.x.array[cells] = np.full(num cells, - Phase A cur)

Phase B, first slot (current direction flipped)..
elif tag in [25, 29, 33, 37, 41]:

J.x.array[cells] = np.full(num cells, - Phase B cur)
Phase B, second slot (current direction flipped, return)
elif tag in [26, 30, 34, 38, 42]:

J.x.array[cells] = np.full(num cells, Phase B cur)

Phase C, second slot..
elif tag in [6, 10, 14, 18, 22]:
J.x.array[cells] = np.full(num cells, Phase C cur)
Phase C, right side (return)...
elif tag in [7, 11, 15, 19, 23]:
J.x.array[cells] = np.full(num cells, - Phase C cur)

V = FunctionSpace(mesh, ("CG", 1))

Conductors left side (bottom to top) [4, 8, 12, 16, 20, 24,
Conductors in first slot (bottom to top) [5, 9, 13, 17, 21, 25,
Conductors in second slot (bottom to top) [6, 10, 14, 18, 22, 26,
Conductors right side (bottom to top) [7, 11, 15, 19, 23, 27,

28,
29,
30,
31,

32,
33,
34,
35,

facets = locate entities boundary(mesh, tdim-1, lambda x: np.full(x.shape[l], True))

dofs = locate dofs topological(V, tdim-1, facets)
bc = dirichletbc(ScalarType(0), dofs, V)

TrialFunction(V)

TestFunction(V)

(1 / mu) * dot(grad(u), grad(v)) * dx
J * v * dx

ro < c

A z = Function(V)
problem = LinearProblem(a, L, u=A z, bcs=[bc])
problem.solve()

W
B

VectorFunctionSpace(mesh, ("DG", 0))
Function(W)

36,
37,
38,
39,

B expr = Expression(as vector((A z.dx(1l), -A z.dx(0))), W.element.interpolation points)

BTinterpolate(B_expr)
plotter = pyvista.Plotter()

Az grid = pyvista.UnstructuredGrid(*create vtk mesh(V))
Az _grid.point data["A z"] = A z.x.array

Az grid.set active scalars("A z")

warp = Az grid.warp by scalar("A z", factor=le7)

actor = plotter.add mesh(warp, show edges=True)

40]
41]
42]
43]

if not pyvista.OFF SCREEN:
if view vector pontential ==
if view slice ==

This code constructed from info derived from https://docs.pyvista.org/examples/01-filter/slic
"Single slice - origin defaults to the center of the mesh"

and https://docs.pyvista.org/api/core/ autosummary/pyvista.UnstructuredGrid.slice.html

The slicing offset is .01/2, .01 being the thickness of the copper part of the conduction pla
single slice = warp.slice(normal='y', origin=([x axis cond plate start, y axis cond plate start
p = pyvista.Plotter()

p.add mesh(warp.outline(), color="k")
p.add_mesh(single slice, show_edges=True)
p.view xz()
p.show()

else:

plotter.view xz()
plotter.show()

if view magnetic field ==

plotter = pyvista.Plotter()
plotter.set position([0,0,5])

We include ghosts cells as we access all degrees of freedom (including ghosts) on each process
top imap = mesh.topology.index map(mesh.topology.dim)

num cells = top imap.size local + top imap.num ghosts

midpoints compute midpoints(mesh, mesh.topology.dim, range(num cells))

num dofs = W.dofmap.index map.size local + W.dofmap.index map.num ghosts

assert(num _cells == num dofs)
values = np.zeros((num dofs, 3), dtype=np.float64)
values[:, :mesh.geometry.dim] = B.x.array.real.reshape(num dofs, W.dofmap.index map bs)

cloud = pyvista.PolyData(midpoints)

cloud["B"] = values

glyphs = cloud.glyph("B", factor=1le5) # (original was factor=2e6)
actor = plotter.add mesh(grid, style="wireframe", color="k")

actor2 = plotter.add mesh(glyphs)

if not pyvista.OFF SCREEN:
plotter.show()

else:
pyvista.start xvfb()
B fig = plotter.screenshot("B.png")

else:
pyvista.start xvfb()
Az _fig = plotter.screenshot("Az.png")

time.sleep(.5)
ch = input("Hit return to continue...")
clear output(wait=True)

Simulation results (not interactive)

The images below show the vector potential in 3-D for interation steps 1 and 3 for a preset direction of
field rotation.

To get a better view of the field through the entire 360 degrees of field rotation, all 20 interations relative
to the X-Z plane are shown below.

One can note a fundimental of a sine wave as the rotation progresses the 20 steps between 0 and 360
field rotation.

Minimial size dictates that the motor be constructed with only three loops, (A,B,C). This limits the
configuration of winding overlap to "A over B invert", "B invert over C".

At this point of analysis, this simulation has no relative view of performance. For this to be achieved, time-
stepping must be added to algorythm above. The currents applied to the three staggered sets of traces
would then have to be set to a realistic value indicative of the cross sectional area of the PC board traces.
With the algorythm modified current flow in the copper portion of the conduction plate would be realized.
(Of course, the step interation size would have to be increased to provide for a reasonably accurate
simulation..

With this achieved it would be a relatively strait forward exercise to determine idea of the force that could
be produced (given a core depth, which in this simulation is zero).

The details of the core and PC based winding traces for this simulation are shown below relative to the X-Y
plane. Based on standard 10-layer PC FR-4 board technology, | believe the X-Y dimension of the the motor
can be brought down to approximately .5 by .25 inches. Core depth (Z dimension) would detemine the
potential linear force that could achieved.

————

|yl

/ 10 Layer PC board
Ed = = — == ==

0.220 e

}4 0.550° ,{

Traces

Not used
A
A return

B return

C
C return

=1
]
I=———=
I B
=
——
|

