
2-D	FEM	Simulation	for	Induction	Positioner	(Rev	1)
Michael	E.	Aiello	10/8//22

This	file	is	based	on	code	from	application	em.ipynb	written	by	Jørgen	S.	Dokken	https://jorgensd.github.io/dolfinx-
tutorial/chapter3/em.html

This	program	runs	in	an	open	souce	simulation	program	known	as	FENiCSx	https://jorgensd.github.io/dolfinx-tutorial/

The	interface	used	in	this	simulation	is	a	Python	Notebook	file	(.ipnb)	running	in	JupyterLab.	This	document	can	be	saved
as	an	HTML	file	with	simulations	results	that	can	be	viewed	interactively	offline.	However,	the	current	enviroment	used
is	not	setup	to	generate	this	type	of	document.	As	a	result,	the	simulation	results	are	saved	at	the	bottom	of	this	HTML
file	in	static	form.

.

Comments	as	to	modifications	to	the	original	code	provided	by	Jørgen	S.	Dokken	are	provided	in	boldface	below.

In	the	first	code	segment	below,	GMSH	python	programs	have	been	created	to	model	the	core	and
induction	plate	(copper	faced	iron	plate).	There	are	two	cores	created.	A	regular	E-core	(three	teeth	and
two	gaps)	and	a	core	with	five	teeth.	The	E-core	allows	for	a	smaller	width	but	offers	reduced	performance
over	the	the	five	teeth	version.	The	five	teeth,	three	gap	variant	is	used	in	this	simulation.	Python	files
GenerateCore_2_Gap_Rev_3,	Generate_4_Gap_Rev_3,	GenerateCore_Enhanced,
GenerateConductivePlate_copper,	GenerateConductivePlate_iron	are	mesh	generation	files	(GMSH)	and
are	not	in	this	presentation

import	gmsh
import	numpy	as	np
from	mpi4py	import	MPI			#	NOTE:	Not	running	with	MPI	effects	precision	of	computations!

from	GeneratePCTraces_Rev_3	import	*
from	GenerateCore_2_Gap_Rev_3	import	*
from	GenerateCore_4_Gap_Rev_3	import	*
from	GenerateCore_Enhanced	import	*
from	GenerateConductionPlate_copper	import	*
from	GenerateConductionPlate_iron	import	*
gmsh.initialize()

r	=	0.05
R	=	1					#	Radius	of	domain				
gdim	=	2		#	Geometric	dimension	of	the	mesh

air_gap	=	.0025

center_x_pos_off	=	-	.5	*	(3	*	(.025	+	.01	+	.01)	+	4	*	(.06	-	.015))

https://jorgensd.github.io/dolfinx-tutorial/chapter3/em.html
https://jorgensd.github.io/dolfinx-tutorial/

center_y_pos_off	=	-	.5	*	(.05	+	.01	+	air_gap	+	(.1	+	(.0014	+	.0087)	*	(10	+	2)))
				
layer_start_pos	=	.1	+	.0087	+	center_y_pos_off
row_start_pos	=	.06	-	.015	+	.01	+	center_x_pos_off	-	.5	*	(.06	+	.03)

core_y_start_pos	=	0	+	center_y_pos_off
core_x_start_pos	=	0	+	center_x_pos_off

plate_y_offset	=	air_gap	+	(.1	+	(.0014	+	.0087)	*	(10	+	2))
plate_x_offset	=	-	.5	*	(.7	-	3	*	(.025	+	.01	+	.01)	-	4	*	(.06	-	.015))
y_axis_cond_plate_start	=	plate_y_offset	+	0	+	center_y_pos_off
x_axis_cond_plate_start	=	plate_x_offset	+	0	+	center_x_pos_off

rank	=	MPI.COMM_WORLD.rank

		
if	rank	==	0:				
				gmsh.model.occ.synchronize()					

				#	Define	geometry	for	background
				background	=	gmsh.model.occ.addDisk(0,	0,	0,	R,	R)
				gmsh.model.occ.synchronize()			
				
				#Select	to	use	two	gap	core...
				Use_2_Gap_Core	=	0
				
				if	Use_2_Gap_Core	==	1:						
								core_x_start_pos	=	core_x_start_pos	+	.5	*	(.06	+	.03)
								GenCoreRtnVals	=	GenerateCore_2_Gap_Rev_3(core_y_start_pos,	core_x_start_pos)
				else:
								core_x_start_pos	=	core_x_start_pos	-	.5	*	(.06	+	.03)
								GenCoreRtnVals	=	GenerateCore_4_Gap_Rev_3(core_y_start_pos,	core_x_start_pos)
								
				core	=	GenCoreRtnVals[1]
				core_mass	=	GenCoreRtnVals[0]
				
				core_tuple	=	[(2,	core)]

				GenPCRtnVals	=		GeneratePCTraces_Rev_3(layer_start_pos,	row_start_pos)	
				traces	=	GenPCRtnVals[1]
				traces_mass	=	GenPCRtnVals[0]
				
				GenCondPltRtnVals_copper	=	GenerateConductionPlate_copper(y_axis_cond_plate_start,	x_axis_cond_plate_start)
				copper	=	GenCondPltRtnVals_copper[1]
				copper_mass	=	GenCondPltRtnVals_copper[0]
				
				copper_tuple	=	[(2,	copper)]
				
				GenCondPltRtnVals_iron	=	GenerateConductionPlate_iron(y_axis_cond_plate_start,	x_axis_cond_plate_start)
				iron	=	GenCondPltRtnVals_iron[1]
				iron_mass	=	GenCondPltRtnVals_iron[0]				
				
				iron_tuple	=	[(2,	iron)]				
				

				trace_tuples	=	[]
				for	i	in	range(len(traces)):
								trace_tuples.append((2,traces[i]))	

				#	Resolve	all	boundaries	of	the	different	wires	in	the	background	domain
				all_surfaces	=	[]
				all_surfaces.extend(core_tuple)
				all_surfaces.extend(copper_tuple)
				all_surfaces.extend(iron_tuple)
				all_surfaces.extend(trace_tuples)
				whole_domain	=	gmsh.model.occ.fragment([(2,	background)],	all_surfaces)
				gmsh.model.occ.synchronize()

				#	Create	physical	markers	for	the	different	components	in	the	backround.
				#	We	use	the	following	markers:
				#	-	Vacuum:	0	(backround	disk)
				#	-	Traces	1	to	len(traces)	
				#	-		
				#	-		
				core_tag	=	1
				copper_tag	=	2
				iron_tag	=	3
				trace_tag	=	4
				background_surfaces	=	[]
				other_surfaces	=	[]
				for	domain	in	whole_domain[0]:
								com	=	gmsh.model.occ.getCenterOfMass(domain[0],	domain[1])
								mass	=	gmsh.model.occ.getMass(domain[0],	domain[1])
								#	Identify	the	core...
								if	np.isclose(mass,	core_mass,	atol	=	.002):
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	core_tag)
												core_tag	+=1
												other_surfaces.append(domain)				

MeshTags 	for	the	physical	cell	data	are	created	below.	There	is	no	change	in	the	code	from	the	original	example
cited	above.

Distribute	the	mesh	over	multiple	processors.	There	is	no	change	in	the	code	from	the	original	example	cited
above.

								#	Identify	the	copper	plate...				
								elif	np.isclose(mass,	copper_mass):
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	copper_tag)
												copper_tag	+=1
												other_surfaces.append(domain)								
								#	Identify	the	iron	plate...				
								elif	np.isclose(mass,	iron_mass):
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	iron_tag)
												iron_tag	+=1
												other_surfaces.append(domain)												
								#	Identify	the	traces	in	the	PC	board.
								elif	np.isclose(mass,	traces_mass):												
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	trace_tag)
												trace_tag	+=1
												other_surfaces.append(domain)
				#				elif	np.allclose(com,	[0,	0,	0]):							(Something	wrong	here.	com	center	way	off!)
								else:
												background_surfaces.append(domain[1])
							
				#	Add	marker	for	the	vacuum
				gmsh.model.addPhysicalGroup(2,	background_surfaces,	tag=0)
				#	Create	mesh	resolution	that	is	fine	around	the	wires	and
				#	iron	cylinder,	coarser	the	further	away	you	get
				gmsh.model.mesh.field.add("Distance",	1)
				edges	=	gmsh.model.getBoundary(other_surfaces,	oriented=False)

				gmsh.model.mesh.field.setNumbers(1,	"EdgesList",	[e[1]	for	e	in	edges])
				gmsh.model.mesh.field.add("Threshold",	2)
				gmsh.model.mesh.field.setNumber(2,	"IField",	1)
				gmsh.model.mesh.field.setNumber(2,	"LcMin",	r	/	2)
				gmsh.model.mesh.field.setNumber(2,	"LcMax",	5	*	r)
				gmsh.model.mesh.field.setNumber(2,	"DistMin",	2	*	r)
				gmsh.model.mesh.field.setNumber(2,	"DistMax",	4	*	r)
				gmsh.model.mesh.field.setAsBackgroundMesh(2)
				#	Generate	mesh
				gmsh.option.setNumber("Mesh.Algorithm",	7)
				gmsh.model.mesh.generate(gdim)

from	dolfinx.io	import	(cell_perm_gmsh,	distribute_entity_data,	extract_gmsh_geometry,	
																								extract_gmsh_topology_and_markers,	ufl_mesh_from_gmsh)
from	dolfinx.cpp.mesh	import	to_type
from	dolfinx.graph	import	create_adjacencylist
from	dolfinx.mesh	import	create_mesh,	meshtags_from_entities
if	rank	==	0:
				#	Get	mesh	geometry
				x	=	extract_gmsh_geometry(gmsh.model)

				#	Get	mesh	topology	for	each	element
				topologies	=	extract_gmsh_topology_and_markers(gmsh.model)
				#	Get	information	about	each	cell	type	from	the	msh	files
				num_cell_types	=	len(topologies.keys())
				cell_information	=	{}
				cell_dimensions	=	np.zeros(num_cell_types,	dtype=np.int32)
				for	i,	element	in	enumerate(topologies.keys()):
								properties	=	gmsh.model.mesh.getElementProperties(element)
								name,	dim,	order,	num_nodes,	local_coords,	_	=	properties
								cell_information[i]	=	{"id":	element,	"dim":	dim,	"num_nodes":	num_nodes}
								cell_dimensions[i]	=	dim

				#	Sort	elements	by	ascending	dimension
				perm_sort	=	np.argsort(cell_dimensions)

				#	Broadcast	cell	type	data	and	geometric	dimension
				cell_id	=	cell_information[perm_sort[-1]]["id"]
				tdim	=	cell_information[perm_sort[-1]]["dim"]
				num_nodes	=	cell_information[perm_sort[-1]]["num_nodes"]
				cell_id,	num_nodes	=	MPI.COMM_WORLD.bcast([cell_id,	num_nodes],	root=0)

				cells	=	np.asarray(topologies[cell_id]["topology"],	dtype=np.int64)
				cell_values	=	np.asarray(topologies[cell_id]["cell_data"],	dtype=np.int32)
else:
				cell_id,	num_nodes	=	MPI.COMM_WORLD.bcast([None,	None],	root=0)
				cells,	x	=	np.empty([0,	num_nodes],	dtype=np.int64),	np.empty([0,	gdim])
				cell_values	=	np.empty((0,),	dtype=np.int32)
gmsh.finalize()

#	Create	distributed	mesh
ufl_domain	=	ufl_mesh_from_gmsh(cell_id,	gdim)
gmsh_cell_perm	=	cell_perm_gmsh(to_type(str(ufl_domain.ufl_cell())),	num_nodes)
cells	=	cells[:,	gmsh_cell_perm]

Create	data	files	to	optionally	inspect	the	mesh	using	Paraview.	(No	changes	to	the	original	example).

Visualize	the	subdommains	interactively	using	PyVista.	As	stated	above	this	program	was	not	saved	for
interactive	display	so	the	results	are	shown	at	the	end	of	this	program	in	static	form.

Next,	we	define	the	discontinous	functions	for	the	permability

and	current

using	the	 MeshTags 	as	in	Defining	material	parameters	through	subdomains

The	code	section	below	has	been	modified	relative	to	the	original	example	(em.ipymb)	to	execute	20	steps
between	0	and	360	degrees	of	an	alternating	current	(J)	applied	to	the	three	phase	copper	traces
contained	in	the	PC	board	inserted	onto	the	motor	core.	The	Vector	potential	is	displayed	for	each
interation.

There	is	an	option	to	view	the	flux	density	(B)	in	each	of	the	20	steps	by	setting	view_magnetic_field	to	1.
This	option	is	disabled	in	this	presentation.

The	direction	of	flux	relative	to	the	stepping	can	be	controlled	by	variable	mmf_negative.

Also	a	slice	of	the	vector	potential	in	the	center	of	the	copper	sheet	(coating)	can	be	viewed	by	setting
view_slice	to	1.

mesh	=	create_mesh(MPI.COMM_WORLD,	cells,	x[:,	:gdim],	ufl_domain)
tdim	=	mesh.topology.dim

local_entities,	local_values	=	distribute_entity_data(mesh,	tdim,	cells,	cell_values)
mesh.topology.create_connectivity(tdim,	0)
adj	=	create_adjacencylist(local_entities)
ct	=	meshtags_from_entities(mesh,	tdim,	adj,	np.int32(local_values))

from	dolfinx.io	import	XDMFFile
with	XDMFFile(MPI.COMM_WORLD,	"gmsh_test_data.xdmf",	"w")	as	xdmf:
				xdmf.write_mesh(mesh)
				xdmf.write_meshtags(ct)

import	pyvista
pyvista.set_jupyter_backend("pythreejs")
from	dolfinx.plot	import	create_vtk_mesh

plotter	=	pyvista.Plotter()
grid	=	pyvista.UnstructuredGrid(*create_vtk_mesh(mesh,	mesh.topology.dim))
num_local_cells	=	mesh.topology.index_map(mesh.topology.dim).size_local
grid.cell_data["Marker"]	=	ct.values[ct.indices<num_local_cells]
grid.set_active_scalars("Marker")
actor	=	plotter.add_mesh(grid,	show_edges=True)
plotter.view_xy()
if	not	pyvista.OFF_SCREEN:
				plotter.show()
else:
				pyvista.start_xvfb()
				cell_tag_fig	=	plotter.screenshot("cell_tags.png")

from	dolfinx.fem	import	(dirichletbc,	Expression,	Function,	FunctionSpace,	
																									VectorFunctionSpace,	locate_dofs_topological)
from	dolfinx.fem.petsc	import	LinearProblem
from	dolfinx.mesh	import	locate_entities_boundary
from	ufl	import	TestFunction,	TrialFunction,	as_vector,	dot,	dx,	grad,	inner
from	petsc4py.PETSc	import	ScalarType

import	time
from	IPython.display	import	clear_output

from	dolfinx.mesh	import	compute_midpoints

#	Set	direction	of	MMF	wave	here	(0	or	1)...
mmf_negative	=	0

#	Select	to	view	vector	potential....
view_vector_pontential	=	1

#	Select	to	show	magnetic	field....
view_magnetic_field	=	0

#	Select	full	3-D	view	or	"slice"	along	the	y	axis	(center	of	the	copper	part	of	the	conduction	plate)
view_slice	=	0

for	idx	in	range(0,	20):
				if	mmf_negative	==	1:
								Theta	=	(19	-	idx)	*	2.0	*	np.pi	/	20.0

file:///home/maiello_20_04/Dolfinx_Projects/dolfinx-tutorial/MEA_workspace_Rev_3/subdomains

				else:
								Theta	=	idx	*	2.0	*	np.pi	/	20.0
				K	=	30.0
				Phase_A_cur	=	K	*	np.sin(Theta)
				Phase_B_cur	=	K	*	np.sin(Theta	-	2.0	*	np.pi	/	3.0)
				Phase_C_cur	=	K	*	np.sin(Theta	-	4.0	*	np.pi	/	3.0)

				Q	=	FunctionSpace(mesh,	("DG",	0))
				material_tags	=	np.unique(ct.values)
				mu	=	Function(Q)
				J	=	Function(Q)
				#	As	we	only	set	some	values	in	J,	initialize	all	as	0
				J.x.array[:]	=	0
				for	tag	in	material_tags:
								cells	=	ct.indices[ct.values==tag]
								num_cells	=	len(cells)
								#	Set	values	for	mu
								if	tag	==	0:
												mu_	=	4	*	np.pi*1e-7	#	Vacuum
								elif	tag	==	1:
												mu_	=	1e-5	#	Core	(This	should	really	be	6.3e-3)
								elif	tag	==	3:
												mu_	=	1e-5	#	Conduction	Plate	(iron)	(This	should	really	be	6.3e-3)
								else:
												mu_	=	1.26e-6	#	Else,	Copper	traces	and	Conduction	Plate	(copper)
								mu.x.array[cells]	=	np.full(num_cells,	mu_)
								#	Now,	assign	the	currents	to	traces	representing	Phase	A,	B	and	C
								#						Conductors	left	side	(bottom	to	top)							[4,	8,		12,	16,	20,	24,	28,	32,	36,	40]
								#						Conductors	in	first	slot	(bottom	to	top)			[5,	9,		13,	17,	21,	25,	29,	33,	37,	41]
								#						Conductors	in	second	slot	(bottom	to	top)		[6,	10,	14,	18,	22,	26,	30,	34,	38,	42]
								#						Conductors	right	side	(bottom	to	top)						[7,	11,	15,	19,	23,	27,	31,	35,	39,	43]
								

#																#	!!!!	Verified	OK	above	!!!!!!~!
#								
#								if	tag	in	[28]:
#												J.x.array[cells]	=	np.full(num_cells,	300.0)
								

								#	Phase	A,	right	side...
								if	tag	in	[4,	8,		12,	16,	20]:
												J.x.array[cells]	=	np.full(num_cells,	Phase_A_cur)												
								#	Phase	A,	first	slot	(return)...
								elif	tag	in	[5,	9,		13,	17,	21]:								
												J.x.array[cells]	=	np.full(num_cells,	-	Phase_A_cur)
												
								#	Phase	B,	first	slot	(current	direction	flipped)...
								elif	tag	in	[25,	29,	33,	37,	41]:
												J.x.array[cells]	=	np.full(num_cells,		-	Phase_B_cur)
								#	Phase	B,	second	slot	(current	direction	flipped,	return)
								elif	tag	in	[26,	30,	34,	38,	42]:												
												J.x.array[cells]	=	np.full(num_cells,		Phase_B_cur)
												
								#	Phase	C,	second	slot...
								elif	tag	in	[6,	10,	14,	18,	22]:											
												J.x.array[cells]	=	np.full(num_cells,	Phase_C_cur)
								#	Phase	C,	right	side	(return)...
								elif	tag	in	[7,	11,	15,	19,	23]:			
												J.x.array[cells]	=	np.full(num_cells,	-	Phase_C_cur)
												
							

				V	=	FunctionSpace(mesh,	("CG",	1))
				facets	=	locate_entities_boundary(mesh,	tdim-1,	lambda	x:	np.full(x.shape[1],	True))
				dofs	=	locate_dofs_topological(V,	tdim-1,	facets)
				bc	=	dirichletbc(ScalarType(0),	dofs,	V)

				u	=	TrialFunction(V)
				v	=	TestFunction(V)
				a	=	(1	/	mu)	*	dot(grad(u),	grad(v))	*	dx
				L	=	J	*	v	*	dx							

				A_z	=	Function(V)
				problem	=	LinearProblem(a,	L,	u=A_z,	bcs=[bc])
				problem.solve()								

				W	=	VectorFunctionSpace(mesh,	("DG",	0))
				B	=	Function(W)
				B_expr	=	Expression(as_vector((A_z.dx(1),	-A_z.dx(0))),	W.element.interpolation_points)
				B.interpolate(B_expr)								

				plotter	=	pyvista.Plotter()

				Az_grid	=	pyvista.UnstructuredGrid(*create_vtk_mesh(V))
				Az_grid.point_data["A_z"]	=	A_z.x.array
				Az_grid.set_active_scalars("A_z")
				warp	=	Az_grid.warp_by_scalar("A_z",	factor=1e7)
				actor	=	plotter.add_mesh(warp,	show_edges=True)

Simulation	results	(not	interactive)
The	images	below	show	the	vector	potential	in	3-D	for	interation	steps	1	and	3	for	a	preset	direction	of
field	rotation.

				if	not	pyvista.OFF_SCREEN:
								
								if	view_vector_pontential	==	1:
												
												if	view_slice	==	1:

																#	This	code	constructed	from	info	derived	from	https://docs.pyvista.org/examples/01-filter/slicing.html	
																#		"Single	slice	-	origin	defaults	to	the	center	of	the	mesh"
																#	and	https://docs.pyvista.org/api/core/_autosummary/pyvista.UnstructuredGrid.slice.html
																#	The	slicing	offset	is	.01/2,	.01	being	the	thickness	of	the	copper	part	of	the	conduction	plate.
																single_slice	=	warp.slice(normal='y',	origin=([x_axis_cond_plate_start,	y_axis_cond_plate_start	
																p	=	pyvista.Plotter()
																p.add_mesh(warp.outline(),	color="k")
																p.add_mesh(single_slice,	show_edges=True)
																p.view_xz()
																p.show()								

												else:

																plotter.view_xz()
																plotter.show()
												
												
								if	view_magnetic_field	==	1:
												
												plotter	=	pyvista.Plotter()
												plotter.set_position([0,0,5])
												
												#	We	include	ghosts	cells	as	we	access	all	degrees	of	freedom	(including	ghosts)	on	each	process
												top_imap	=	mesh.topology.index_map(mesh.topology.dim)
												num_cells	=	top_imap.size_local	+	top_imap.num_ghosts
												midpoints	=	compute_midpoints(mesh,	mesh.topology.dim,	range(num_cells))

												num_dofs	=	W.dofmap.index_map.size_local	+		W.dofmap.index_map.num_ghosts
												assert(num_cells	==	num_dofs)
												values	=	np.zeros((num_dofs,	3),	dtype=np.float64)
												values[:,	:mesh.geometry.dim]	=	B.x.array.real.reshape(num_dofs,	W.dofmap.index_map_bs)
												cloud	=	pyvista.PolyData(midpoints)
												cloud["B"]	=	values
												glyphs	=	cloud.glyph("B",	factor=1e5)			#	(original	was	factor=2e6)
												actor	=	plotter.add_mesh(grid,	style="wireframe",	color="k")
												actor2	=	plotter.add_mesh(glyphs)

												if	not	pyvista.OFF_SCREEN:
																plotter.show()
												else:
																pyvista.start_xvfb()
																B_fig	=	plotter.screenshot("B.png")												
												
												
				
								
				else:
								pyvista.start_xvfb()
								Az_fig	=	plotter.screenshot("Az.png")								
								
								
							
				time.sleep(.5)				
				ch	=	input("Hit	return	to	continue...")	
				clear_output(wait=True)

To	get	a	better	view	of	the	field	through	the	entire	360	degrees	of	field	rotation,	all	20	interations	relative
to	the	X-Z	plane	are	shown	below.

One	can	note	a	fundimental	of	a	sine	wave	as	the	rotation	progresses	the	20	steps	between	0	and	360
field	rotation.

Minimial	size	dictates	that	the	motor	be	constructed	with	only	three	loops,	(A,B,C).	This	limits	the
configuration	of	winding	overlap	to	"A	over	B	invert",	"B	invert	over	C".

At	this	point	of	analysis,	this	simulation	has	no	relative	view	of	performance.	For	this	to	be	achieved,	time-
stepping	must	be	added	to	algorythm	above.	The	currents	applied	to	the	three	staggered	sets	of	traces
would	then	have	to	be	set	to	a	realistic	value	indicative	of	the	cross	sectional	area	of	the	PC	board	traces.
With	the	algorythm	modified	current	flow	in	the	copper	portion	of	the	conduction	plate	would	be	realized.
(Of	course,	the	step	interation	size	would	have	to	be	increased	to	provide	for	a	reasonably	accurate
simulation..

With	this	achieved	it	would	be	a	relatively	strait	forward	exercise	to	determine	idea	of	the	force	that	could
be	produced	(given	a	core	depth,	which	in	this	simulation	is	zero).

The	details	of	the	core	and	PC	based	winding	traces	for	this	simulation	are	shown	below	relative	to	the	X-Y
plane.	Based	on	standard	10-layer	PC	FR-4	board	technology,	I	believe	the	X-Y	dimension	of	the	the	motor
can	be	brought	down	to	approximately	.5	by	.25	inches.	Core	depth	(Z	dimension)	would	detemine	the
potential	linear	force	that	could	achieved.

