2-D FEM Simulation for Induction Positioner (Rev 2)

(The addition of time-stepping to the algorithm presented in Rev 1 for
the purpose of viewing the induced current in the copper layer of the
inducion plate.)

Michael E. Aiello 12/31//22

This file is based on code from application em.ipynb written by Jgrgen S. Dokken https://jorgensd.github.io/dolfinx-
tutorial/chapter3/em.html

This program runs in an open souce simulation program known as FENiCSx https://jorgensd.github.io/dolfinx-tutorial/

Simulation results documented at the end of this file.

Comments as to modifications to the original code provided by Jgrgen S. Dokken are provided in boldface below.

Relative to Rev 1 document there is no changes made to this section

import gmsh
import numpy as np
from mpi4py import MPI # NOTE: Not running with MPI effects precision of computations!

from GeneratePCTraces Rev 3 import *

from GenerateCore 2 Gap Rev 3 import *

from GenerateCore 4 Gap Rev 3 import *

from GenerateCore Enhanced import *

from GenerateConductionPlate copper import *
from GenerateConductionPlate iron import *
gmsh.initialize()

r=0.05
R=1 # Radius of domain
gdim = 2 # Geometric dimension of the mesh

air gap = .0025

3% (.025 + .01 + .01) + 4 * (.06 - .015))
.05 + .01 + air gap + (.1 + (.0014 + .0087) * (10 + 2)))

center x pos off
center y pos off

NORCEN(
SR

layer start pos = .1 + .0087 + center y pos off
row_start pos = .06 - .015 + .01 + center _x pos off - .5 * (.06 + .03)


https://jorgensd.github.io/dolfinx-tutorial/chapter3/em.html
https://jorgensd.github.io/dolfinx-tutorial/

core y start pos
core_x_start pos

0 + center y pos off
0 + center x pos off

plate y offset = air gap + (.1 + (.0014 + .0087) * (10 + 2))
plate x offset = - .5 * (.7 - 3 * (.025 + .01 + .01) - 4 * (.06 - .015))
y_axis_cond plate start = plate y offset + 0 + center_y pos _off
x_axis_cond plate start = plate x offset + 0 + center_x_pos_off

rank = MPI.COMM WORLD.rank

if rank ==
gmsh.model.occ.synchronize()

# Define geometry for background
background = gmsh.model.occ.addDisk(0, 0, 0, R, R)
gmsh.model.occ.synchronize()

#Select to use two gap core...
Use 2 Gap Core = 0

if Use 2 Gap Core == 1:

core x_start pos = core x start pos + .5 * (.06 + .03)

GenCoreRtnVals = GenerateCore 2 Gap Rev 3(core y start pos, core x start pos)
else:

core x_start pos = core x start pos - .5 * (.06 + .03)

GenCoreRtnVals = GenerateCore 4 Gap Rev 3(core y start pos, core x start pos)

core = GenCoreRtnVals[1]
core mass = GenCoreRtnVals[0]

core tuple = [(2, core)]

GenPCRtnVals = GeneratePCTraces Rev 3(layer start pos, row start pos)
traces = GenPCRtnVals[1]
traces mass = GenPCRtnVals[0]

GenCondP1tRtnVals copper = GenerateConductionPlate copper(y axis cond plate start, x axis cond plate start)
copper = GenCondPltRtnVals copper[1]
copper _mass = GenCondPltRtnVals copper[0]

copper _tuple = [(2, copper)]

GenCondPltRtnVals_iron = GenerateConductionPlate iron(y axis_cond_plate start, x_axis_cond _plate start)
iron = GenCondPltRtnVals iron[1]
iron_mass = GenCondPltRtnVals_iron[0]

iron tuple = [(2, iron)]

trace tuples = []
for i in range(len(traces)):
trace tuples.append((2,traces[i]))

# Resolve all boundaries of the different wires in the background domain
all surfaces = []

all surfaces.extend(core tuple)

all surfaces.extend(copper_ tuple)

all surfaces.extend(iron tuple)

all surfaces.extend(trace tuples)

whole domain = gmsh.model.occ.fragment([(2, background)], all surfaces)
gmsh.model.occ.synchronize()

# Create physical markers for the different components in the backround.
# We use the following markers:
# - Vacuum: 0 (backround disk)
# - Traces 1 to len(traces)
# -
# -
core_tag =
copper_tag
iron tag =
trace tag = 4
background surfaces = []
other surfaces = []
for domain in whole domain[0]:
com = gmsh.model.occ.getCenter0fMass(domain[0], domain[1])
mass = gmsh.model.occ.getMass(domain[0@], domain[1])
# Identify the core. ..
if np.isclose(mass, core mass, atol = .002):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], core tag)
core_tag +=1
other surfaces.append(domain)
# Identify the copper plate...
elif np.isclose(mass, copper mass):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], copper tag)
copper_tag +=1
other surfaces.append(domain)
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# Identify the iron plate...

elif np.isclose(mass, iron mass):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], iron_ tag)
iron tag +=1
other surfaces.append(domain)

# Identify the traces in the PC board.

elif np.isclose(mass, traces mass):
gmsh.model.addPhysicalGroup(domain[0], [domain[1]], trace tag)
trace_tag +=1
other surfaces.append(domain)

# elif np.allclose(com, [0, O, 0O]): (Something wrong here. com center way off!)

else:

background surfaces.append(domain[1])

# Add marker for the vacuum

gmsh.model.addPhysicalGroup(2, background surfaces, tag=0)

# Create mesh resolution that is fine around the wires and

# 1ron cylinder, coarser the further away you get
gmsh.model.mesh.field.add("Distance", 1)

edges = gmsh.model.getBoundary(other surfaces, oriented=False)

gmsh.model.mesh.field.setNumbers(1l, "EdgesList", [e[l] for e in edges])
gmsh.model.mesh.field.add("Threshold", 2)
gmsh.model.mesh.field.setNumber(2, "IField", 1)
gmsh.model.mesh.field.setNumber(2, "LcMin", r / 2)
gmsh.model.mesh.field.setNumber(2, "LcMax", 5 * r)
gmsh.model.mesh.field.setNumber(2, "DistMin", 2 * r)
gmsh.model.mesh.field.setNumber(2, "DistMax", 4 * r)
gmsh.model.mesh.field.setAsBackgroundMesh(2)

# Generate mesh
gmsh.option.setNumber("Mesh.Algorithm", 7)
gmsh.model.mesh.generate(gdim)

MeshTags for the physical cell data are created below. There is no change in the code from the original example
cited above.

from dolfinx.io import (cell perm gmsh, distribute entity data, extract gmsh geometry,
extract gmsh topology and markers, ufl mesh from gmsh)
from dolfinx.cpp.mesh import to type
from dolfinx.graph import create adjacencylist
from dolfinx.mesh import create mesh, meshtags from entities
if rank == 0:
# Get mesh geometry
x = extract gmsh geometry(gmsh.model)

# Get mesh topology for each element

topologies = extract gmsh topology and markers(gmsh.model)

# Get information about each cell type from the msh files

num cell types = len(topologies.keys())

cell information = {}

cell dimensions = np.zeros(num cell types, dtype=np.int32)

for i, element in enumerate(topologies.keys()):
properties = gmsh.model.mesh.getElementProperties(element)
name, dim, order, num nodes, local coords, = properties
cell information[i] = {"id": element, "dim": dim, "num nodes": num nodes}
cell dimensions[i] = dim

# Sort elements by ascending dimension
perm sort = np.argsort(cell dimensions)

# Broadcast cell type data and geometric dimension

cell id = cell information[perm sort[-1]]["id"]

tdim = cell information[perm sort[-1]]["dim"]

num nodes = cell information[perm sort[-1]]["num nodes"]

cell id, num nodes = MPI.COMM WORLD.bcast([cell id, num nodes], root=0)

cells = np.asarray(topologies[cell id]["topology"], dtype=np.int64)
cell values = np.asarray(topologies[cell id]["cell data"], dtype=np.int32)
else:
cell id, num nodes = MPI.COMM WORLD.bcast([None, None], root=0)
cells, x = np.empty([0, num nodes], dtype=np.int64), np.empty([0, gdim])
cell values = np.empty((0,), dtype=np.int32)
gmsh.finalize()

Distribute the mesh over multiple processors. There is no change in the code from the original example cited
above.

# Create distributed mesh

ufl domain = ufl mesh from gmsh(cell id, gdim)

gmsh cell perm = cell perm gmsh(to type(str(ufl domain.ufl cell())), num nodes)
cells = cells[:, gmsh cell perm]

mesh = create mesh(MPI.COMM WORLD, cells, x[:, :gdim], ufl domain)

tdim = mesh.topology.dim

local entities, local values = distribute entity data(mesh, tdim, cells, cell values)
mesh.topology.create connectivity(tdim, 0)



adj = create adjacencylist(local entities)
ct = meshtags from entities(mesh, tdim, adj, np.int32(local values))

Create data files to optionally inspect the mesh using Paraview. (No changes to the original example).

from dolfinx.io import XDMFFile

with XDMFFile(MPI.COMM WORLD, "gmsh test data.xdmf", "w") as xdmf:
xdmf.write mesh(mesh)
xdmf.write meshtags(ct)

Visualize the subdommains interactively using PyVista. There is no change in the code from the original example
cited above.

import pyvista
pyvista.set jupyter backend("pythreejs")
from dolfinx.plot import create vtk mesh

plotter = pyvista.Plotter()
grid = pyvista.UnstructuredGrid(*create vtk mesh(mesh, mesh.topology.dim))
num local cells = mesh.topology.index map(mesh.topology.dim).size local
grid.cell data["Marker"] = ct.values[ct.indices<num local cells]
grid.set active scalars("Marker")
actor = plotter.add mesh(grid, show edges=True)
plotter.view xy()
if not pyvista.OFF SCREEN:

plotter.show()
else:

pyvista.start xvfb()

cell tag fig = plotter.screenshot("cell tags.png")

Next, we define the discontinous functions for the permability u

v’
and current J,

J.

using the MeshTags as in Defining material parameters through subdomains

For Rev 2, time-stepping code is added to this section

The code section below has been modified relative to the original example (em.ipymb) to execute 20 steps
between 0 and 360 degrees of an alternating current (J) applied to the three phase copper traces
contained in the PC board inserted onto the motor core. The Vector potential is displayed for each
ineration.

In addition, time stepping has been added to the code below. Within each of the 20 steps, 50 inerations of
the code is executed in order to compute the first and second derivative of the FEM computed vector
potential at each ineration step.

The first derivative of the vector potential represents the generated "Electric Field". Here we are
interested only in the electric field within the copper portion of the induction plate (which can conduct
current). The second derivative of the vector potential represents the generated current or "}". Again, we
are only interested in current generated in the copper portion of the induction plate. For purposes of
demonstration, it is assumed that all other elements within the FEM grid have no conductivity. This
includes the copper traces in the PC board which under the assumption in this simulation, are pure current
sources.

It should be noted that in this experiment, the generated "J" in the copper plate IS NOT fed back into the
algorithm (although it would be a simple process to do so). The point here is to demonstrate that the
second derivative of the vector potential when induced in a conducting material should be proportional to
the "minus" value of the sourced vector vector potential produced by the current flowing in the copper
traces within the core. This in turn is what produces force on the conducting plate.

It may also be of interest to see the affect of adding a DC current to all three phases during the time-
stepping process.

Question: Is it possible to make use of damping in dynamic operation (motion). One idea (unrelated to the
demonstration at hand), is the damping of a induction motor spindle running at high speed? The
interesting thing here is that the effect of damping is limited only to the performance of the current loop
and not any of the higher order control loops within the system.

A slice of the vector potential, the generated first directive of the vector potential, and the second
derivative of the vector potential in the center of the copper sheet (coating) is viewed by setting
view_slice to 1.


file:///home/maiello_20_04/Dolfinx_Projects/dolfinx-tutorial/MEA_workspace_Rev_4/subdomains

DC current is set by assigning a value to the variable damping_current (in this case a value of .2 which is
would be an extreme use case and only used here for demonstration purposes.) The DC current is added to
all three phases. This provides a minor problem with the power amplifier. To apply an equal amount of
bias current to each of the three phases requires that the WYE connection of the motor be referenced to
power return or a seperate amplifier be used to control each phase of the motor stator. (The intial thought
was adding a balanced offset to Phases A, B and C which would not require the WYE connection to be
reference to power return. However, this may an optimium approach because there is always one point in
comutation where this offset would be canceled?)

Question: Is adding an equal amount of DC current to each phase the correct approach for adding a
damping effect to the system. Or since Phase B winding is reversed, should a positive current offset be
applied to Phase A and C and an negative offset applied to Phase B?

from dolfinx.fem import (dirichletbc, Expression, Function, FunctionSpace,
VectorFunctionSpace, locate dofs topological)

from dolfinx.fem.petsc import LinearProblem

from dolfinx.mesh import locate entities_boundary

from ufl import TestFunction, TrialFunction, as vector, dot, dx, grad, inner

from petsc4py.PETSc import ScalarType

import time
from IPython.display import clear output

from dolfinx.mesh import compute midpoints

# Set direction of MMF wave here (0 or 1)...
mmf negative = 0

# Select to view vector potential....
view vector_pontential = 1

# Select to show magnetic field....
view magnetic field = 0

# Select full 3-D view or "slice" along the y axis (center of the copper part of the conduction plate)
view slice = 0

Q = FunctionSpace(mesh, ("DG", 0))
material tags = np.unique(ct.values)
mu = Function(Q)

J = Function(Q)

V = FunctionSpace(mesh, ("CG", 1))

facets = locate entities boundary(mesh, tdim-1, lambda x: np.full(x.shape[l], True))
dofs = locate dofs topological(V, tdim-1, facets)

bc = dirichletbc(ScalarType(0), dofs, V)

u = TrialFunction(V)

v = TestFunction(V)

a = (1 / mu) * dot(grad(u), grad(v)) * dx
L=J%*v*dx

A z = Function(V)

problem = LinearProblem(a, L, u=A z, bcs=[bc])
W = VectorFunctionSpace(mesh, ("DG", 0))
B = Function(W)

A z 1 = Function(V)

A z 2 = Function(V)

d2A z dt2 = Function(V)

dA z dt = Function(V)

idx_range = 1000 # Do not exceed this value. There seems to be float operation mixed in with double!

idx display = int(idx range) / 20 # Always display 20 snapshots no matter the idx range

#Use this for viewing results ("setting to 0" is the vector potential itself) ...
# 1- first derivative of vector potential
# 2- second derivative of vector potential
display derivative = 2

#Add desired DC offset to the current command for all three phases to represent
#the "damping" factor. (Use 0 or .2)
damping current = 0

for idx in range(0, idx range):
if mmf negative ==
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Theta = ((idx _range - 1) - idx) * 2.0 * np.pi / idx range
else:

Theta = idx * 2.0 * np.pi / idx range
K = 30.0
Phase A cur
Phase B cur
Phase C cur

K * (np.sin(Theta) + damping current)
K * (np.sin(Theta - 2.0 * np.pi / 3.0) + damping current)
K * (np.sin(Theta - 4.0 * np.pi / 3.0) + damping current)

Q = FunctionSpace(mesh, ("DG", 0))
material tags = np.unique(ct.values)
mu = Function(Q)
J = Function(Q)
# As we only set some values in J, initialize all as 0
J.x.array[:] = 0
for tag in material tags:
cells = ct.indices[ct.values==tag]
num cells = len(cells)
# Set values for mu

if tag == 0:
mu_ = 4 * np.pi*le-7 # Vacuum
elif tag == 1:
mu_ = le-5 # Core (This should really be 6.3e-3)
elif tag == 3:
mu_ = le-5 # Conduction Plate (iron) (This should really be 6.3e-3)
else:
mu_ = 1.26e-6 # Else, Copper traces and Conduction Plate (copper)
mu.x.array[cells] = np.full(num cells, mu )
# Now, assign the currents to traces representing Phase A, B and C
# Conductors left side (bottom to top) [4, 8, 12, 16, 20, 24, 28, 32, 36, 40]
# Conductors in first slot (bottom to top) [5, 9, 13, 17, 21, 25, 29, 33, 37, 41]
# Conductors in second slot (bottom to top) [6, 10, 14, 18, 22, 26, 30, 34, 38, 42]
# Conductors right side (bottom to top) [7, 11, 15, 19, 23, 27, 31, 35, 39, 43]

# 111! Verified OK above 1111~/

if tag in [28]:
J.x.array[cells] = np.full(num cells, 300.0)

# Phase A, right side..
if tag in [4, 8, 12, 16, 20]:
J.x.array[cells] = np.full(num cells, Phase A cur)
# Phase A, first slot (return)...
elif tag in [5, 9, 13, 17, 21]:
J.x.array[cells] = np.full(num cells, - Phase A cur)

# Phase B, first slot (current direction flipped)...
elif tag in [25, 29, 33, 37, 41]:

J.x.array[cells] = np.full(num cells, - Phase B cur)
# Phase B, second slot (current direction flipped, return)
elif tag in [26, 30, 34, 38, 42]:

J.x.array[cells] = np.full(num cells, Phase B cur)

# Phase C, second slot..
elif tag in [6, 10, 14, 18, 22]:
J.x.array[cells] = np.full(num cells, Phase C cur)
# Phase C, right side (return)...
elif tag in [7, 11, 15, 19, 23]:
J.x.array[cells] = np.full(num cells, - Phase C cur)

= FunctionSpace(mesh, ("CG", 1))
facets = locate entities boundary(mesh, tdim-1, lambda x: np.full(x.shape[l], True))
dofs = locate dofs topological(V, tdim-1, facets)
bc = dirichletbc(ScalarType(0), dofs, V)

TrialFunction(V)

TestFunction(V)

(1 / mu) * dot(grad(u), grad(v)) * dx
J * v * dx

~o < <

A z = Function(V)
problem = LinearProblem(a, L, u=A z, bcs=[bc])
problem.solve()

W = VectorFunctionSpace(mesh, ("DG", 0))

B = Function(W)
B expr = Expression(as vector((A z.dx(1l), -A z.dx(0))), W.element.interpolation points)
B.interpolate(B expr)

#https://fenicsproject.discourse.group/t/dolfinx-fem-function-function-add-with-dolfinx-fem-function-f



d2A

z dt2.x.array[:] = (A z.x.array[:] - 2*A z 1l.x.array[:] + A z 2.x.array[:]) * idx display * idx display
#NOTE: idx display * idx display in numerator satisfies denomenator dt**2 since delta(idx) is a

dA z dt.x.array[:] = (A z.x.array[:] - A z l.x.array[:]) * idx display

Az
Az

~l.x.array[:]

#https://fenicsproject.discourse.group/t/copying-a-function-in-dolfinx/7425
#https://fenicsproject.discourse.group/t/function-assign-in-dolfinx/7992/4
2.x.array[:] A z 1.x.arrayl[:]

A z.x.array[:]

if idx % idx display == 0:

plotter = pyvista.Plotter()
Az grid = pyvista.UnstructuredGrid(*create vtk mesh(V))
if display derivative ==

Az grid.point data["d2A z dt2"] = d2A z dt2.x.array
Az grid.set active scalars("d2A z dt2")
warp = Az grid.warp by scalar("d2A z dt2", factor=le7 * 13) # Need to adjust scale here.

elif display derivative == 1:

Az_grid.point_data["dA z dt"] = dA z dt.x.array
Az grid.set active scalars("dA z dt")
warp = Az grid.warp by scalar("dA z dt", factor=1le7 * 5) # Need to adjust scale here.

else:

Az grid.point data["A z"] = A z.x.array
Az grid.set active scalars("A z")
warp = Az grid.warp by scalar("A z", factor=1le7)

actor = plotter.add mesh(warp, show edges=True)
if not pyvista.OFF SCREEN:

if view vector pontential ==
if view slice ==

# This code constructed from info derived from https://docs.pyvista.org/examples/01-filter/
# "Single slice - origin defaults to the center of the mesh"

# and https://docs.pyvista.org/api/core/ autosummary/pyvista.UnstructuredGrid.slice.html

# The slicing offset is .01/2, .01 being the thickness of the copper part of the conduction
single slice = warp.slice(normal='y', origin=([x _axis cond plate start, y axis cond plate s
p = pyvista.Plotter()

p.add mesh(warp.outline(), color="k")

p.add mesh(single slice, show edges=True)

p.view xz()

p.show()

else:
plotter.view xz()
plotter.show()
if view magnetic field == 1:

plotter = pyvista.Plotter()
plotter.set position([0,0,5])

# We include ghosts cells as we access all degrees of freedom (including ghosts) on each proces
top imap = mesh.topology.index map(mesh.topology.dim)

num cells = top imap.size local + top imap.num ghosts

midpoints = compute midpoints(mesh, mesh.topology.dim, range(num cells))

num dofs = W.dofmap.index map.size local + W.dofmap.index map.num ghosts

assert(num cells == num dofs)
values = np.zeros((num dofs, 3), dtype=np.float64)
values[:, :mesh.geometry.dim] = B.x.array.real.reshape(num dofs, W.dofmap.index map bs)

cloud = pyvista.PolyData(midpoints)

cloud["B"] = values

glyphs = cloud.glyph("B", factor=1e5) # (original was factor=2e6)
actor = plotter.add mesh(grid, style="wireframe", color="k")

actor2 = plotter.add mesh(glyphs)

if not pyvista.OFF SCREEN:
plotter.show()

else:
pyvista.start xvfb()
B fig = plotter.screenshot("B.png")



print("Plot number", int(idx / idx display))

else:
pyvista.start xvfb()
Az fig = plotter.screenshot("Az.png")

time.sleep(.5)
ch = input("Hit return to continue...")
clear output(wait=True)

Simulation results (not interactive)

The image below shows the vector potential in 3-D for iteration step 3 (out of 20) for a preset direction of
field rotation. Keep in mind that between each iteration, 50 time steps are executed.

Views on the plane X-Y

The vector potential, no DC offset.

First derivative of the vector potential (electric field), no DC offset.

Second derivative of the vector potential, no DC offset (induced electric current), at points where
conductivity is not infinity. In this demonstration, this would only be in the cross-section of the copper



coating covering the conduction plate.

The vector potential, with DC offset.

First derivative of the vector potential (electric field), with DC offset (should be the same as no DC offset
plot above.

Second derivative of the vector potential with DC offset (induced electric current), at points where
conductivity is not infinity (should be the same as no DC offset plot above.

Note that as expected (with scaling), the second derivative of the vector potential reflects the negative of
the vector potential (with no DC offset) in the plots above. The shift in position between the two quatities
as the field rotates is what produces force.

Views on the plane X-Y sliced at the center of the copper coating of
the conduction plate.

Second derivative of the vector potential, no DC offset (induced electric current)

Second derivative of the vector potential with DC offset (induced electric current). Should be same as no
DC offset plot above.



