
2-D	FEM	Simulation	for	Induction	Positioner	(Rev	2)
(The	addition	of	time-stepping	to	the	algorithm	presented	in	Rev	1	for
the	purpose	of	viewing	the	induced	current	in	the	copper	layer	of	the
inducion	plate.)
Michael	E.	Aiello	12/31//22

This	file	is	based	on	code	from	application	em.ipynb	written	by	Jørgen	S.	Dokken	https://jorgensd.github.io/dolfinx-
tutorial/chapter3/em.html

This	program	runs	in	an	open	souce	simulation	program	known	as	FENiCSx	https://jorgensd.github.io/dolfinx-tutorial/

Simulation	results	documented	at	the	end	of	this	file.

.

Comments	as	to	modifications	to	the	original	code	provided	by	Jørgen	S.	Dokken	are	provided	in	boldface	below.

Relative	to	Rev	1	document	there	is	no	changes	made	to	this	section

import	gmsh
import	numpy	as	np
from	mpi4py	import	MPI			#	NOTE:	Not	running	with	MPI	effects	precision	of	computations!

from	GeneratePCTraces_Rev_3	import	*
from	GenerateCore_2_Gap_Rev_3	import	*
from	GenerateCore_4_Gap_Rev_3	import	*
from	GenerateCore_Enhanced	import	*
from	GenerateConductionPlate_copper	import	*
from	GenerateConductionPlate_iron	import	*
gmsh.initialize()

r	=	0.05
R	=	1					#	Radius	of	domain				
gdim	=	2		#	Geometric	dimension	of	the	mesh

air_gap	=	.0025

center_x_pos_off	=	-	.5	*	(3	*	(.025	+	.01	+	.01)	+	4	*	(.06	-	.015))
center_y_pos_off	=	-	.5	*	(.05	+	.01	+	air_gap	+	(.1	+	(.0014	+	.0087)	*	(10	+	2)))
				
layer_start_pos	=	.1	+	.0087	+	center_y_pos_off
row_start_pos	=	.06	-	.015	+	.01	+	center_x_pos_off	-	.5	*	(.06	+	.03)

https://jorgensd.github.io/dolfinx-tutorial/chapter3/em.html
https://jorgensd.github.io/dolfinx-tutorial/

core_y_start_pos	=	0	+	center_y_pos_off
core_x_start_pos	=	0	+	center_x_pos_off

plate_y_offset	=	air_gap	+	(.1	+	(.0014	+	.0087)	*	(10	+	2))
plate_x_offset	=	-	.5	*	(.7	-	3	*	(.025	+	.01	+	.01)	-	4	*	(.06	-	.015))
y_axis_cond_plate_start	=	plate_y_offset	+	0	+	center_y_pos_off
x_axis_cond_plate_start	=	plate_x_offset	+	0	+	center_x_pos_off

rank	=	MPI.COMM_WORLD.rank

		
if	rank	==	0:				
				gmsh.model.occ.synchronize()					

				#	Define	geometry	for	background
				background	=	gmsh.model.occ.addDisk(0,	0,	0,	R,	R)
				gmsh.model.occ.synchronize()			
				
				#Select	to	use	two	gap	core...
				Use_2_Gap_Core	=	0
				
				if	Use_2_Gap_Core	==	1:						
								core_x_start_pos	=	core_x_start_pos	+	.5	*	(.06	+	.03)
								GenCoreRtnVals	=	GenerateCore_2_Gap_Rev_3(core_y_start_pos,	core_x_start_pos)
				else:
								core_x_start_pos	=	core_x_start_pos	-	.5	*	(.06	+	.03)
								GenCoreRtnVals	=	GenerateCore_4_Gap_Rev_3(core_y_start_pos,	core_x_start_pos)
								
				core	=	GenCoreRtnVals[1]
				core_mass	=	GenCoreRtnVals[0]
				
				core_tuple	=	[(2,	core)]

				GenPCRtnVals	=		GeneratePCTraces_Rev_3(layer_start_pos,	row_start_pos)	
				traces	=	GenPCRtnVals[1]
				traces_mass	=	GenPCRtnVals[0]
				
				GenCondPltRtnVals_copper	=	GenerateConductionPlate_copper(y_axis_cond_plate_start,	x_axis_cond_plate_start)
				copper	=	GenCondPltRtnVals_copper[1]
				copper_mass	=	GenCondPltRtnVals_copper[0]
				
				copper_tuple	=	[(2,	copper)]
				
				GenCondPltRtnVals_iron	=	GenerateConductionPlate_iron(y_axis_cond_plate_start,	x_axis_cond_plate_start)
				iron	=	GenCondPltRtnVals_iron[1]
				iron_mass	=	GenCondPltRtnVals_iron[0]				
				
				iron_tuple	=	[(2,	iron)]				
				

				trace_tuples	=	[]
				for	i	in	range(len(traces)):
								trace_tuples.append((2,traces[i]))	

				#	Resolve	all	boundaries	of	the	different	wires	in	the	background	domain
				all_surfaces	=	[]
				all_surfaces.extend(core_tuple)
				all_surfaces.extend(copper_tuple)
				all_surfaces.extend(iron_tuple)
				all_surfaces.extend(trace_tuples)
				whole_domain	=	gmsh.model.occ.fragment([(2,	background)],	all_surfaces)
				gmsh.model.occ.synchronize()

				#	Create	physical	markers	for	the	different	components	in	the	backround.
				#	We	use	the	following	markers:
				#	-	Vacuum:	0	(backround	disk)
				#	-	Traces	1	to	len(traces)	
				#	-		
				#	-		
				core_tag	=	1
				copper_tag	=	2
				iron_tag	=	3
				trace_tag	=	4
				background_surfaces	=	[]
				other_surfaces	=	[]
				for	domain	in	whole_domain[0]:
								com	=	gmsh.model.occ.getCenterOfMass(domain[0],	domain[1])
								mass	=	gmsh.model.occ.getMass(domain[0],	domain[1])
								#	Identify	the	core...
								if	np.isclose(mass,	core_mass,	atol	=	.002):
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	core_tag)
												core_tag	+=1
												other_surfaces.append(domain)				
								#	Identify	the	copper	plate...				
								elif	np.isclose(mass,	copper_mass):
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	copper_tag)
												copper_tag	+=1
												other_surfaces.append(domain)								

MeshTags 	for	the	physical	cell	data	are	created	below.	There	is	no	change	in	the	code	from	the	original	example
cited	above.

Distribute	the	mesh	over	multiple	processors.	There	is	no	change	in	the	code	from	the	original	example	cited
above.

								#	Identify	the	iron	plate...				
								elif	np.isclose(mass,	iron_mass):
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	iron_tag)
												iron_tag	+=1
												other_surfaces.append(domain)												
								#	Identify	the	traces	in	the	PC	board.
								elif	np.isclose(mass,	traces_mass):												
												gmsh.model.addPhysicalGroup(domain[0],	[domain[1]],	trace_tag)
												trace_tag	+=1
												other_surfaces.append(domain)
				#				elif	np.allclose(com,	[0,	0,	0]):							(Something	wrong	here.	com	center	way	off!)
								else:
												background_surfaces.append(domain[1])
							
				#	Add	marker	for	the	vacuum
				gmsh.model.addPhysicalGroup(2,	background_surfaces,	tag=0)
				#	Create	mesh	resolution	that	is	fine	around	the	wires	and
				#	iron	cylinder,	coarser	the	further	away	you	get
				gmsh.model.mesh.field.add("Distance",	1)
				edges	=	gmsh.model.getBoundary(other_surfaces,	oriented=False)

				gmsh.model.mesh.field.setNumbers(1,	"EdgesList",	[e[1]	for	e	in	edges])
				gmsh.model.mesh.field.add("Threshold",	2)
				gmsh.model.mesh.field.setNumber(2,	"IField",	1)
				gmsh.model.mesh.field.setNumber(2,	"LcMin",	r	/	2)
				gmsh.model.mesh.field.setNumber(2,	"LcMax",	5	*	r)
				gmsh.model.mesh.field.setNumber(2,	"DistMin",	2	*	r)
				gmsh.model.mesh.field.setNumber(2,	"DistMax",	4	*	r)
				gmsh.model.mesh.field.setAsBackgroundMesh(2)
				#	Generate	mesh
				gmsh.option.setNumber("Mesh.Algorithm",	7)
				gmsh.model.mesh.generate(gdim)

from	dolfinx.io	import	(cell_perm_gmsh,	distribute_entity_data,	extract_gmsh_geometry,	
																								extract_gmsh_topology_and_markers,	ufl_mesh_from_gmsh)
from	dolfinx.cpp.mesh	import	to_type
from	dolfinx.graph	import	create_adjacencylist
from	dolfinx.mesh	import	create_mesh,	meshtags_from_entities
if	rank	==	0:
				#	Get	mesh	geometry
				x	=	extract_gmsh_geometry(gmsh.model)

				#	Get	mesh	topology	for	each	element
				topologies	=	extract_gmsh_topology_and_markers(gmsh.model)
				#	Get	information	about	each	cell	type	from	the	msh	files
				num_cell_types	=	len(topologies.keys())
				cell_information	=	{}
				cell_dimensions	=	np.zeros(num_cell_types,	dtype=np.int32)
				for	i,	element	in	enumerate(topologies.keys()):
								properties	=	gmsh.model.mesh.getElementProperties(element)
								name,	dim,	order,	num_nodes,	local_coords,	_	=	properties
								cell_information[i]	=	{"id":	element,	"dim":	dim,	"num_nodes":	num_nodes}
								cell_dimensions[i]	=	dim

				#	Sort	elements	by	ascending	dimension
				perm_sort	=	np.argsort(cell_dimensions)

				#	Broadcast	cell	type	data	and	geometric	dimension
				cell_id	=	cell_information[perm_sort[-1]]["id"]
				tdim	=	cell_information[perm_sort[-1]]["dim"]
				num_nodes	=	cell_information[perm_sort[-1]]["num_nodes"]
				cell_id,	num_nodes	=	MPI.COMM_WORLD.bcast([cell_id,	num_nodes],	root=0)

				cells	=	np.asarray(topologies[cell_id]["topology"],	dtype=np.int64)
				cell_values	=	np.asarray(topologies[cell_id]["cell_data"],	dtype=np.int32)
else:
				cell_id,	num_nodes	=	MPI.COMM_WORLD.bcast([None,	None],	root=0)
				cells,	x	=	np.empty([0,	num_nodes],	dtype=np.int64),	np.empty([0,	gdim])
				cell_values	=	np.empty((0,),	dtype=np.int32)
gmsh.finalize()

#	Create	distributed	mesh
ufl_domain	=	ufl_mesh_from_gmsh(cell_id,	gdim)
gmsh_cell_perm	=	cell_perm_gmsh(to_type(str(ufl_domain.ufl_cell())),	num_nodes)
cells	=	cells[:,	gmsh_cell_perm]
mesh	=	create_mesh(MPI.COMM_WORLD,	cells,	x[:,	:gdim],	ufl_domain)
tdim	=	mesh.topology.dim

local_entities,	local_values	=	distribute_entity_data(mesh,	tdim,	cells,	cell_values)
mesh.topology.create_connectivity(tdim,	0)

Create	data	files	to	optionally	inspect	the	mesh	using	Paraview.	(No	changes	to	the	original	example).

Visualize	the	subdommains	interactively	using	PyVista.	There	is	no	change	in	the	code	from	the	original	example
cited	above.

Next,	we	define	the	discontinous	functions	for	the	permability	μ

and	current	Jz

using	the	 MeshTags 	as	in	Defining	material	parameters	through	subdomains

For	Rev	2,	time-stepping	code	is	added	to	this	section
The	code	section	below	has	been	modified	relative	to	the	original	example	(em.ipymb)	to	execute	20	steps
between	0	and	360	degrees	of	an	alternating	current	(J)	applied	to	the	three	phase	copper	traces
contained	in	the	PC	board	inserted	onto	the	motor	core.	The	Vector	potential	is	displayed	for	each
ineration.

In	addition,	time	stepping	has	been	added	to	the	code	below.	Within	each	of	the	20	steps,	50	inerations	of
the	code	is	executed	in	order	to	compute	the	first	and	second	derivative	of	the	FEM	computed	vector
potential	at	each	ineration	step.

The	first	derivative	of	the	vector	potential	represents	the	generated	"Electric	Field".	Here	we	are
interested	only	in	the	electric	field	within	the	copper	portion	of	the	induction	plate	(which	can	conduct
current).	The	second	derivative	of	the	vector	potential	represents	the	generated	current	or	"J".	Again,	we
are	only	interested	in	current	generated	in	the	copper	portion	of	the	induction	plate.	For	purposes	of
demonstration,	it	is	assumed	that	all	other	elements	within	the	FEM	grid	have	no	conductivity.	This
includes	the	copper	traces	in	the	PC	board	which	under	the	assumption	in	this	simulation,	are	pure	current
sources.

It	should	be	noted	that	in	this	experiment,	the	generated	"J"	in	the	copper	plate	IS	NOT	fed	back	into	the
algorithm	(although	it	would	be	a	simple	process	to	do	so).	The	point	here	is	to	demonstrate	that	the
second	derivative	of	the	vector	potential	when	induced	in	a	conducting	material	should	be	proportional	to
the	"minus"	value	of	the	sourced	vector	vector	potential	produced	by	the	current	flowing	in	the	copper
traces	within	the	core.	This	in	turn	is	what	produces	force	on	the	conducting	plate.

It	may	also	be	of	interest	to	see	the	affect	of	adding	a	DC	current	to	all	three	phases	during	the	time-
stepping	process.

Question:	Is	it	possible	to	make	use	of	damping	in	dynamic	operation	(motion).	One	idea	(unrelated	to	the
demonstration	at	hand),	is	the	damping	of	a	induction	motor	spindle	running	at	high	speed?	The
interesting	thing	here	is	that	the	effect	of	damping	is	limited	only	to	the	performance	of	the	current	loop
and	not	any	of	the	higher	order	control	loops	within	the	system.

A	slice	of	the	vector	potential,	the	generated	first	directive	of	the	vector	potential,	and	the	second
derivative	of	the	vector	potential	in	the	center	of	the	copper	sheet	(coating)	is	viewed	by	setting
view_slice	to	1.

adj	=	create_adjacencylist(local_entities)
ct	=	meshtags_from_entities(mesh,	tdim,	adj,	np.int32(local_values))

from	dolfinx.io	import	XDMFFile
with	XDMFFile(MPI.COMM_WORLD,	"gmsh_test_data.xdmf",	"w")	as	xdmf:
				xdmf.write_mesh(mesh)
				xdmf.write_meshtags(ct)

import	pyvista
pyvista.set_jupyter_backend("pythreejs")
from	dolfinx.plot	import	create_vtk_mesh

plotter	=	pyvista.Plotter()
grid	=	pyvista.UnstructuredGrid(*create_vtk_mesh(mesh,	mesh.topology.dim))
num_local_cells	=	mesh.topology.index_map(mesh.topology.dim).size_local
grid.cell_data["Marker"]	=	ct.values[ct.indices<num_local_cells]
grid.set_active_scalars("Marker")
actor	=	plotter.add_mesh(grid,	show_edges=True)
plotter.view_xy()
if	not	pyvista.OFF_SCREEN:
				plotter.show()
else:
				pyvista.start_xvfb()
				cell_tag_fig	=	plotter.screenshot("cell_tags.png")

file:///home/maiello_20_04/Dolfinx_Projects/dolfinx-tutorial/MEA_workspace_Rev_4/subdomains

DC	current	is	set	by	assigning	a	value	to	the	variable	damping_current	(in	this	case	a	value	of	.2	which	is
would	be	an	extreme	use	case	and	only	used	here	for	demonstration	purposes.)	The	DC	current	is	added	to
all	three	phases.	This	provides	a	minor	problem	with	the	power	amplifier.	To	apply	an	equal	amount	of
bias	current	to	each	of	the	three	phases	requires	that	the	WYE	connection	of	the	motor	be	referenced	to
power	return	or	a	seperate	amplifier	be	used	to	control	each	phase	of	the	motor	stator.	(The	intial	thought
was	adding	a	balanced	offset	to	Phases	A,	B	and	C	which	would	not	require	the	WYE	connection	to	be
reference	to	power	return.	However,	this	may	an	optimium	approach	because	there	is	always	one	point	in
comutation	where	this	offset	would	be	canceled?)

Question:	Is	adding	an	equal	amount	of	DC	current	to	each	phase	the	correct	approach	for	adding	a
damping	effect	to	the	system.	Or	since	Phase	B	winding	is	reversed,	should	a	positive	current	offset	be
applied	to	Phase	A	and	C	and	an	negative	offset	applied	to	Phase	B?

from	dolfinx.fem	import	(dirichletbc,	Expression,	Function,	FunctionSpace,	
																									VectorFunctionSpace,	locate_dofs_topological)
from	dolfinx.fem.petsc	import	LinearProblem
from	dolfinx.mesh	import	locate_entities_boundary
from	ufl	import	TestFunction,	TrialFunction,	as_vector,	dot,	dx,	grad,	inner
from	petsc4py.PETSc	import	ScalarType

import	time
from	IPython.display	import	clear_output

from	dolfinx.mesh	import	compute_midpoints

#	Set	direction	of	MMF	wave	here	(0	or	1)...
mmf_negative	=	0

#	Select	to	view	vector	potential....
view_vector_pontential	=	1

#	Select	to	show	magnetic	field....
view_magnetic_field	=	0

#	Select	full	3-D	view	or	"slice"	along	the	y	axis	(center	of	the	copper	part	of	the	conduction	plate)
view_slice	=	0

Q	=	FunctionSpace(mesh,	("DG",	0))
material_tags	=	np.unique(ct.values)
mu	=	Function(Q)
J	=	Function(Q)

V	=	FunctionSpace(mesh,	("CG",	1))
facets	=	locate_entities_boundary(mesh,	tdim-1,	lambda	x:	np.full(x.shape[1],	True))
dofs	=	locate_dofs_topological(V,	tdim-1,	facets)
bc	=	dirichletbc(ScalarType(0),	dofs,	V)

u	=	TrialFunction(V)
v	=	TestFunction(V)
a	=	(1	/	mu)	*	dot(grad(u),	grad(v))	*	dx
L	=	J	*	v	*	dx							

A_z	=	Function(V)
problem	=	LinearProblem(a,	L,	u=A_z,	bcs=[bc])

W	=	VectorFunctionSpace(mesh,	("DG",	0))
B	=	Function(W)

A_z_1	=	Function(V)
A_z_2	=	Function(V)

d2A_z_dt2	=	Function(V)
dA_z_dt	=	Function(V)

														
idx_range	=	1000			#	Do	not	exceed	this	value.	There	seems	to	be	float	operation	mixed	in	with	double!

idx_display	=	int(idx_range)	/	20			#	Always	display	20	snapshots	no	matter	the	idx_range

				#Use	this	for	viewing	results	("setting	to	0"	is	the	vector	potential	itself)	...
								#	1-	first	derivative	of	vector	potential
								#	2-	second	derivative	of	vector	potential
display_derivative	=	2

				#Add	desired	DC	offset	to	the	current	command	for	all	three	phases	to	represent
				#the	"damping"	factor.		(Use	0	or	.2)
damping_current	=	0

for	idx	in	range(0,	idx_range):
				if	mmf_negative	==	1:

								Theta	=	((idx_range	-	1)	-	idx)	*	2.0	*	np.pi	/	idx_range
				else:
								Theta	=	idx	*	2.0	*	np.pi	/	idx_range
				K	=	30.0
				Phase_A_cur	=	K	*	(np.sin(Theta)	+	damping_current)	
				Phase_B_cur	=	K	*	(np.sin(Theta	-	2.0	*	np.pi	/	3.0)	+	damping_current)
				Phase_C_cur	=	K	*	(np.sin(Theta	-	4.0	*	np.pi	/	3.0)	+	damping_current)

#				Q	=	FunctionSpace(mesh,	("DG",	0))
#				material_tags	=	np.unique(ct.values)
#				mu	=	Function(Q)
#				J	=	Function(Q)
				#	As	we	only	set	some	values	in	J,	initialize	all	as	0
				J.x.array[:]	=	0
				for	tag	in	material_tags:
								cells	=	ct.indices[ct.values==tag]
								num_cells	=	len(cells)
								#	Set	values	for	mu
								if	tag	==	0:
												mu_	=	4	*	np.pi*1e-7	#	Vacuum
								elif	tag	==	1:
												mu_	=	1e-5	#	Core	(This	should	really	be	6.3e-3)
								elif	tag	==	3:
												mu_	=	1e-5	#	Conduction	Plate	(iron)	(This	should	really	be	6.3e-3)
								else:
												mu_	=	1.26e-6	#	Else,	Copper	traces	and	Conduction	Plate	(copper)
								mu.x.array[cells]	=	np.full(num_cells,	mu_)
								#	Now,	assign	the	currents	to	traces	representing	Phase	A,	B	and	C
								#						Conductors	left	side	(bottom	to	top)							[4,	8,		12,	16,	20,	24,	28,	32,	36,	40]
								#						Conductors	in	first	slot	(bottom	to	top)			[5,	9,		13,	17,	21,	25,	29,	33,	37,	41]
								#						Conductors	in	second	slot	(bottom	to	top)		[6,	10,	14,	18,	22,	26,	30,	34,	38,	42]
								#						Conductors	right	side	(bottom	to	top)						[7,	11,	15,	19,	23,	27,	31,	35,	39,	43]
								

#																#	!!!!	Verified	OK	above	!!!!!!~!
#								
#								if	tag	in	[28]:
#												J.x.array[cells]	=	np.full(num_cells,	300.0)
								

								#	Phase	A,	right	side...
								if	tag	in	[4,	8,		12,	16,	20]:
												J.x.array[cells]	=	np.full(num_cells,	Phase_A_cur)												
								#	Phase	A,	first	slot	(return)...
								elif	tag	in	[5,	9,		13,	17,	21]:								
												J.x.array[cells]	=	np.full(num_cells,	-	Phase_A_cur)
												
								#	Phase	B,	first	slot	(current	direction	flipped)...
								elif	tag	in	[25,	29,	33,	37,	41]:
												J.x.array[cells]	=	np.full(num_cells,		-	Phase_B_cur)
								#	Phase	B,	second	slot	(current	direction	flipped,	return)
								elif	tag	in	[26,	30,	34,	38,	42]:												
												J.x.array[cells]	=	np.full(num_cells,		Phase_B_cur)
												
								#	Phase	C,	second	slot...
								elif	tag	in	[6,	10,	14,	18,	22]:											
												J.x.array[cells]	=	np.full(num_cells,	Phase_C_cur)
								#	Phase	C,	right	side	(return)...
								elif	tag	in	[7,	11,	15,	19,	23]:			
												J.x.array[cells]	=	np.full(num_cells,	-	Phase_C_cur)
												
							

#				V	=	FunctionSpace(mesh,	("CG",	1))
#				facets	=	locate_entities_boundary(mesh,	tdim-1,	lambda	x:	np.full(x.shape[1],	True))
#				dofs	=	locate_dofs_topological(V,	tdim-1,	facets)
#				bc	=	dirichletbc(ScalarType(0),	dofs,	V)
#
#				u	=	TrialFunction(V)
#				v	=	TestFunction(V)
#				a	=	(1	/	mu)	*	dot(grad(u),	grad(v))	*	dx
#				L	=	J	*	v	*	dx							
#
#				A_z	=	Function(V)
#				problem	=	LinearProblem(a,	L,	u=A_z,	bcs=[bc])
				problem.solve()								

#				W	=	VectorFunctionSpace(mesh,	("DG",	0))
#				B	=	Function(W)
				B_expr	=	Expression(as_vector((A_z.dx(1),	-A_z.dx(0))),	W.element.interpolation_points)
				B.interpolate(B_expr)								
				
				
				

		
									#https://fenicsproject.discourse.group/t/dolfinx-fem-function-function-add-with-dolfinx-fem-function-function/9328	

				d2A_z_dt2.x.array[:]	=	(A_z.x.array[:]	-	2*A_z_1.x.array[:]	+	A_z_2.x.array[:])	*	idx_display	*	idx_display
																#NOTE:	idx_display	*	idx_display	in	numerator	satisfies	denomenator	dt**2	since	delta(idx)	is	always	"1".

				dA_z_dt.x.array[:]	=	(A_z.x.array[:]	-	A_z_1.x.array[:])	*	idx_display							

									#https://fenicsproject.discourse.group/t/copying-a-function-in-dolfinx/7425
									#https://fenicsproject.discourse.group/t/function-assign-in-dolfinx/7992/4
				A_z_2.x.array[:]	=	A_z_1.x.array[:]				
				A_z_1.x.array[:]	=	A_z.x.array[:]
						
			
		
				if	idx	%	idx_display	==	0:
				
								plotter	=	pyvista.Plotter()

								Az_grid	=	pyvista.UnstructuredGrid(*create_vtk_mesh(V))

								if	display_derivative	==	2:

												Az_grid.point_data["d2A_z_dt2"]	=	d2A_z_dt2.x.array
												Az_grid.set_active_scalars("d2A_z_dt2")
												warp	=	Az_grid.warp_by_scalar("d2A_z_dt2",	factor=1e7	*	13)			#	Need	to	adjust	scale	here.			
												
								elif	display_derivative	==	1:

												Az_grid.point_data["dA_z_dt"]	=	dA_z_dt.x.array
												Az_grid.set_active_scalars("dA_z_dt")
												warp	=	Az_grid.warp_by_scalar("dA_z_dt",	factor=1e7	*	5)			#	Need	to	adjust	scale	here.															
												
								else:

												Az_grid.point_data["A_z"]	=	A_z.x.array
												Az_grid.set_active_scalars("A_z")
												warp	=	Az_grid.warp_by_scalar("A_z",	factor=1e7)

								actor	=	plotter.add_mesh(warp,	show_edges=True)
								if	not	pyvista.OFF_SCREEN:

												if	view_vector_pontential	==	1:

																if	view_slice	==	1:

																				#	This	code	constructed	from	info	derived	from	https://docs.pyvista.org/examples/01-filter/slicing.html	
																				#		"Single	slice	-	origin	defaults	to	the	center	of	the	mesh"
																				#	and	https://docs.pyvista.org/api/core/_autosummary/pyvista.UnstructuredGrid.slice.html
																				#	The	slicing	offset	is	.01/2,	.01	being	the	thickness	of	the	copper	part	of	the	conduction	plate.
																				single_slice	=	warp.slice(normal='y',	origin=([x_axis_cond_plate_start,	y_axis_cond_plate_start
																				p	=	pyvista.Plotter()
																				p.add_mesh(warp.outline(),	color="k")
																				p.add_mesh(single_slice,	show_edges=True)
																				p.view_xz()
																				p.show()								

																else:

																				plotter.view_xz()
																				plotter.show()

												if	view_magnetic_field	==	1:

																plotter	=	pyvista.Plotter()
																plotter.set_position([0,0,5])

																#	We	include	ghosts	cells	as	we	access	all	degrees	of	freedom	(including	ghosts)	on	each	process
																top_imap	=	mesh.topology.index_map(mesh.topology.dim)
																num_cells	=	top_imap.size_local	+	top_imap.num_ghosts
																midpoints	=	compute_midpoints(mesh,	mesh.topology.dim,	range(num_cells))

																num_dofs	=	W.dofmap.index_map.size_local	+		W.dofmap.index_map.num_ghosts
																assert(num_cells	==	num_dofs)
																values	=	np.zeros((num_dofs,	3),	dtype=np.float64)
																values[:,	:mesh.geometry.dim]	=	B.x.array.real.reshape(num_dofs,	W.dofmap.index_map_bs)
																cloud	=	pyvista.PolyData(midpoints)
																cloud["B"]	=	values
																glyphs	=	cloud.glyph("B",	factor=1e5)			#	(original	was	factor=2e6)
																actor	=	plotter.add_mesh(grid,	style="wireframe",	color="k")
																actor2	=	plotter.add_mesh(glyphs)

																if	not	pyvista.OFF_SCREEN:
																				plotter.show()
																else:
																				pyvista.start_xvfb()
																				B_fig	=	plotter.screenshot("B.png")												

Simulation	results	(not	interactive)

The	image	below	shows	the	vector	potential	in	3-D	for	iteration	step	3	(out	of	20)	for	a	preset	direction	of
field	rotation.	Keep	in	mind	that	between	each	iteration,	50	time	steps	are	executed.

Views	on	the	plane	X-Y

The	vector	potential,	no	DC	offset.

First	derivative	of	the	vector	potential	(electric	field),	no	DC	offset.

Second	derivative	of	the	vector	potential,	no	DC	offset	(induced	electric	current),	at	points	where
conductivity	is	not	infinity.	In	this	demonstration,	this	would	only	be	in	the	cross-section	of	the	copper

												print("Plot	number",	int(idx	/	idx_display))

								else:
												pyvista.start_xvfb()
												Az_fig	=	plotter.screenshot("Az.png")								

								time.sleep(.5)				
								ch	=	input("Hit	return	to	continue...")	
								clear_output(wait=True)

coating	covering	the	conduction	plate.

The	vector	potential,	with	DC	offset.

First	derivative	of	the	vector	potential	(electric	field),	with	DC	offset	(should	be	the	same	as	no	DC	offset
plot	above.

Second	derivative	of	the	vector	potential	with	DC	offset	(induced	electric	current),	at	points	where
conductivity	is	not	infinity	(should	be	the	same	as	no	DC	offset	plot	above.

Note	that	as	expected	(with	scaling),	the	second	derivative	of	the	vector	potential	reflects	the	negative	of
the	vector	potential	(with	no	DC	offset)	in	the	plots	above.	The	shift	in	position	between	the	two	quatities
as	the	field	rotates	is	what	produces	force.

Views	on	the	plane	X-Y	sliced	at	the	center	of	the	copper	coating	of
the	conduction	plate.

Second	derivative	of	the	vector	potential,	no	DC	offset	(induced	electric	current)

Second	derivative	of	the	vector	potential	with	DC	offset	(induced	electric	current).	Should	be	same	as	no
DC	offset	plot	above.

