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Described in the paper Implementation of an Advanced AC BrushlessMotor Controller for Use in High
Reliability a model for a basic caged induction motor was presented. A custom simulator was used to

run a simple trajectory open loop using V/f (constant volt seconds) command reference.

In this section we add to the simulator, a simple closed loop control model that demonstrates field
oriented control for an induction motor.

In keeping with that presented in the previous paper, we set the motor simulator to run in the Rotating
Frame (physical model with no D/Q transformations). We also enable space vector PWM (simulations
in the paper cited above used analog voltages applied to the motor terminals).

Other changes to the simulator:

* DC bus voltage is changed from 600 VDC to 100 VDC.
* The trajectory command of 10 seconds is maintained but the maximum speed command is
changed from 50 radians/sec to 1 radians/sec (approx 2 comutation cycles over 10 sec).

The motor simulator runs entirely in floating point double precision format. However, I thought it may
be useful to demonstrate the control portion of the simulator running in both double precision floating
point (64 bit) and fixed precision (32 bit) formats.

In line with experimenting with the fixed 32 bit format, it made sense to me to look at the control
solutions for induction motors provided by the TI C2000 motor control SDK.

TI C2000 SOC's are designed specifically for motor control applications. These chips are designed to
implement control algorithms written entirely using fixed point arithmetic. Current C2000 (C28)
devices employ 32 bit fixed math operations. Newer versions of these devices (C29) employ 32 and 64
bit fixed math operations. Both device types can also perform single and double precision floating
operations, but with less efficiency then cpu cores such as the ARM R5 or A72.

For the C2000 family of devices, TI includes examples for basic implementations of field oriented
control of an induction motor without any feedforward elements added to the control.


https://mea-consulting.org/wp-content/uploads/2015/12/controller.pdf
https://mea-consulting.org/wp-content/uploads/2015/12/controller.pdf

For the purposes of the following demonstration, we use one example provided by TI for sensored field
oriented induction motor control that fits very nicely with the induction motor simulation model
provided in the paper cited above.

This example is outlined in the following TT application note Sensored Field Oriented Control of 3-
Phase InductionMotors

Specifically, the simple control scheme oulined in Figure 9 of Sensored Field Oriented Control of 3-
Phase InductionMotors is what will be implemented in the simulator. This block diagram is shown
below.
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Figure 9. Overall Block Diagram of Indirect Rotor Flux Oriented Control

In the actual C2000 code development environment (SDK), the control shown in the block diagram
above is described by C code in the following document (specifically the code starting at
"BUILDLEVEL==LEVELS5" on page 17 of this document).

See included document HVACI Sensored.c.pdf



https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/hvaci_sensored.c.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/sprabp8.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/sprabp8.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/sprabp8.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/sprabp8.pdf

Using references from "HVACI_Sensored.c" above, two versions of this control are added to the
simulator, labed fixed and double.

Modifying TI's original macros allowed a direct transition to 32 bit fixed point simulation and 64 bit
double simulation. The original IQMath 32 bit fixed point is shown in the included document

FOC tests fixed sim.hpp.pdf

Using full double precision math, the following algorithm was used with the simulator.
See included document controlSuite _double_sim.hpp.

For the the implementation that runs using 32 bit fixed point math, this algorithm was used See
included document controlSuite fixed sim.hpp

The code in both files above use macros provided by the original TI C2000 SDK.
For the double precision floating point case it was a relatively simple process to translate from the TI
Fixed Point format (IQMath) to double precision floating point.

However, for the fixed point test, a little work was involved in the translation because TI does not
provide the IQMath implementation in the form of simulation code.

Fortunately, there happens to be a 32 bit fixed point execution model written in C provided

by Michal Getka, Ivan Voras and Tim Harkrick that could be used as a drop-in for TI IQMath.
See documents fptc.h.pdf. See also document controlSuite TI IQMath ref.h

To run the simulation for the induction motor using the control defined in controlSuite double sim.hpp
or controlSuite fixed sim.hpp, some parameters were changed relative to the open loop simulation
cited in the original paper.

First, the maximum speed (electrical frequency) for the 10 second test trajectory was reduced to 1
radian/sec. The DC bus voltage was reduced from 600 VDC to 100 VDC. Also, the portion of the
simulator dealing with voltage control to the induction motor was changed from analog to PWM
running at 20 KHz.


https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/controlsuite_ti_iqmath_ref.h.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/controlsuite_fixed_sim.hpp_.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/controlsuite_double_sim.hpp_.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/foc_tests_fixed_sim.hpp_.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/controlsuite_double_sim.hpp_.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/controlsuite_fixed_sim.hpp_.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/fptc.h.pdf

Plots of is1 (phase 1 stator current), irl (phase 1 rotor current), and vs1 (line to neutral voltage of phase
1 stator) and the command velocity omegad are shown below (both double and fixed simulations show
similar results, however only the double simulation run is shown).
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Finally, a comparison of the actual velocity omega_r for the simulation when run using "double

precision” control (FOC_tests_double_sim.hpp.

df) and "fixed point" control

(FOC tests fixed sim.hpp.pdf)
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https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/foc_tests_fixed_sim.hpp_.pdf
https://meaconsultingdotorg.wordpress.com/wp-content/uploads/2024/11/foc_tests_double_sim.hpp_.pdf

These results show equivalence using a control implemented in double precision floating point math
and control implemented in fixed point math.

However, this is not to say that both double and fixed implementations are interchangable.
For example, if an application requires a high degree of feedback resolution, the double implementation
will provide better performance.

Never the less, these results do suggest future tests using 64 bit fixed point math which can be provided
by TI's new C29 family of devices (ref F29H859TU-Q1).



https://www.ti.com/product/F29H859TU-Q1

